2013大连中考数学考试说明
2.试题素材、求解方式等要体现公平性
数学学业考试的考查内容、试题素材和试卷形式在总体上对每一位学生而言应当是公平的。即要避免需要特殊背景知识才能够理解的试题素材;要避免试卷的整体表达方式有利于一种认知风格的学生、而不利于另一种认知风格的学生。对于具有特殊才能和需要特殊帮助的学生,试卷的构成应考虑到他们各自的数学认知特征、已有的数学活动经验,给他们提供适当的机会来表达自己的数学才能。
3.试题背景要符合学生的现实
试题背景来自于学生所能理解的生活现实或其他学科现实,与生活或社会相关的题材应当具有鲜明的时代特征,能够在当今学生的实际生活中找到原型,试题所蕴涵的数学应符合学生所具有的数学现实。
4.试题设计应科学、有效
试题内容与结构应当科学,题意应当明确;难度分布合理,难点应分散;试题表述应准确、规范,避免因文字阅读困难而造成的解题障碍。
试题设计与其要达到的考查目标应当一致。
试题的求解过程应反映《数学课程标准(实验稿)》所倡导的数学活动方式。
5.适当增加教材改编题,引导教师重视教材,克服以练代教、盲目训练的弊端。
三、考试内容与要求
(一)学生数学学习成果
按照《数学课程标准(实验稿)》的要求,参照《大连市初中学业质量标准•数学》,九年级学生的数学学习成果主要体现在以下几个方面:
一是获得在未来社会生活中所必备的数学知识、技能和方法;
二是能够初步运用数学的思维方式认识一些自然与社会现象,解决相应的问题;
三是能够自主地从事一些数学探究活动,并能够在活动中有效地表达自己的思维过程,理解他人的观点;
四是能够形成一些基本的思维方式,达到一定的抽象思维水平等。
(二)具体考查内容与要求
具体的考查内容主要包括以下几个方面:基础知识与基本技能,数学活动过程,数学思考,问题解决能力等。
针对具体考查内容的要求如下:
1.基础知识与基本技能
(1)数与代数
● 数与式
了解有理数、无理数、实数的概念,会比较实数的大小,知道实数与数轴上的点一一对应,会用科学记数法表示有理数。理解相反数和绝对值的概念及意义。了解乘方与开方的概念,并理解这两种运算之间的关系。了解平方根、算术平方根、立方根、二次根式的概念,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根。了解整数指数幂的意义和基本性质。掌握实数的加、减、乘、除、乘方及其混合运算的基本过程,善于运用运算律简化运算。具有良好的数感,了解近似数和有效数字的概念,能对含有较大数字的信息做出合理的解释和推断,能用有理数估计一个无理数的大致范围。
理解用字母表示数的意义,能解释简单代数式的实际背景或几何意义,会用代数式表示简单问题的数量关系。通过考虑提供的资料,能找到特定问题所需的公式,并会代入具体数值计算相应代数式的值。了解整式与分式的概念,并会进行简单的整式加、减、乘运算及分式加、减、乘、除运算(包括约分和通分)。了解整式乘法公式及其几何背景,能利用它们简化运算。因式分解式子的指数必须是正整数,且只要求能够利用提公因式法和公式法进行因式分解,其他方法不作为必考内容。
● 方程与不等式
通过分析具体问题中的数量关系,能够列出方程或方程组并会求解,有意识地根据所得解在现实世界的实际意义检验结果是否合理,从而建立有效的数学模型。会解一元一次方程、二元一次方程组、可化为一元一次方程的分式方程(方程中的分式不超过两个),会用因式分解法、公式法和配方法解数字系数的一元二次方程,能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等。通过分析具体问题中的数量关系,能够列出一元一次不等式或不等式组,并能在数轴上表示不等式的解集或利用数轴确定不等式组的解集。在了解不等式意义的基础上理解不等式的基本性质。
● 函数
了解函数的概念和表示方法,能用适当的函数表示法刻画某些实际问题中变量之间的关系。能根据函数解析式以及函数自变量的现实意义确定自变量的取值范围,并会求出具体的函数值。能够借助一次函数、二次函数解析式讨论相应函数的基本性质;在给定函数图象的情境中,能结合图象本身进行相应的函数关系分析,在此基础上对变量的变化规律进行初步预测。在具体情境中能根据已知条件确定一次函数、反比例函数和二次函数的表达式,并从图象的变化上认识不同函数的性质。会根据公式确定二次函数的顶点、开口方向和对称轴(公式不要求记忆和推导)。会利用一次函数图象求一元一次方程、二元一次方程组的解,会利用二次函数图象估计一元二次方程解的大致范围。能利用三种函数表述方式表示实际问题的数学信息,并探索问题中存在的数量关系及变化规律。
(2)空间与图形
2013大连中考数学考试说明
2016年中考信息不断变化,www.91zhongkao.com 91中考网提供的中考成绩查询查分、录取分数线信息仅供参考,具体以相关招生考试部门的信息为准!