2011丹东中考数学考试说明
丹东市2011年中考数学考试说明
根据教育部《全日制义务教育数学课程标准(实验稿)》(以下简称《数学课程标准》的要求,结合我市初中数学学科教学的实际情况,制定本考试说明。
一、命题原则
1.命题以《数学课程标准》规定的内容和程度要求为依据。
2、命题有利于改进学生的学习和教师的教学,从而达到有效地促进学生和教师的发展的目的,同时有利于课程改革的有效实施和深入发展。
3、命题注重对学生学习数学知识与技能的结果和过程的考查,注重对第三学段内容所反映出来的数学思想和数学方法的考查,注重对学生的数学思考能力和解决数学问题能力的考查,加强试题与社会实际和学生生活实际的联系。
4、命题面向全体学生,科学地评价学生通过课改阶段的数学学习所获得的知识和能力。
二、考试范围
考查内容以《数学课程标准》中的“内容标准”为依据,包括第三学段的全部内容。其中“课题学习”不作为独立命题内容。
三、考试内容及要求
数与代数
试题将考查学生学习实数、整式和分式、方程和方程组、不等式和不等式组、函数等知识,探索数、形及实际问题中蕴涵的关系和规律,初步掌握一些有效地表示、处理和交流数量关系以及变化规律的工具,发展符号感,体会数学与现实生活的紧密联系,增强应用意识,提高运用代数知识与方法解决问题的能力.
试题应注重让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从实际问题中建立数学模型、估计、求解、验证解的正确性与合理性的过程,应加强考查方程、不等式、函数等内容的联系,应避免繁琐的运算.
具体 要求:
1、数与式
(1)有理数
①理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.
②借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).
③理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).
④理解有理数的运算律,并能运用运算律简化运算.
⑤能运用有理数的运算解决简单的问题.
⑥能对含有较大数字的信息做出合理的解释和推断.
(2)实数
①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根.
②了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根.
③了解无理数和实数的概念,知道实数与数轴上的点一一对应.
④能用有理数估计一个无理数的大致范围.
⑤了解近似数与有效数字的概念;在解决实际问题中,并按问题的要求对结果取近似值.
⑥了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算(不要求分母有理化).
(3)代数式
①在现实情境中考察用字母表示数的意义.
②能分析简单问题的数量关系,并用代数式表示.
③能解释一些简单代数式的实际背景或几何意义.
④会求代数式的值;能根据特定的问题收集资料,找到所需要的公式,并会代入具体的值进行计算.
(4)整式与分式
①了解整数指数幂的意义和基本性质,会用科学记数法表示数.
②了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘).
③会推导乘法公式:(a+b)(a-b)=a2-b2;(a+b)2=a2+2ab+b2,了解公式的几何背景,并能进行简单计算.
④会用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数).
⑤了解分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.
2、方程与不等式
(1)方程与方程组
①能够根据具体问题中的数量关系,列出方程.
②会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程(方程中的分式不超过两个)
③理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程.
④能根据具体问题的实际意义,检验结果是否合理.
(2)不等式与不等式组
①能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质.
②会解简单的一元一次不等式,并能在数轴上表示出解集.会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集.
③能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的问题.
2011丹东中考数学考试说明
2016年中考信息不断变化,www.91zhongkao.com 91中考网提供的中考成绩查询查分、录取分数线信息仅供参考,具体以相关招生考试部门的信息为准!