2013福建中考数学考试大纲
请根据上面的信息,解决问题:
(1)试计算两种笔记本各买了多少本?
(2)请你解释:小明为什么不可能找回68元?(中等难度题)
23.一副直角三角板叠放如图所示,现将含45°角的三角板ADE固定不动,把含30°角的三角板ABC绕顶点A顺时针旋转角α (α =∠BAD且0°<α<180°),使两块三角板至少有一组边平行.
(1)如图①,α =____°时,BC∥DE;
(2)请你分别在图②、图③的指定框内,各画一种符合要求的图形,标出α,并完成各项填空:
图②中,α = °时,有 ∥ ; 图③中,α = °时,有 ∥ .
(中等难度题)
24. 图1是安装在斜屋面上的热水器,图2是安装该热水器的侧面示意图.已知,斜屋面的倾斜角为25°,长为2.1米的真空管AB与水平线AD的夹角为40°,安装热水器的铁架水平横管BC长0.2米,求
(1)真空管上端B到AD的距离(结果精确到0.01米);
(2)铁架垂直管CE的长(结果精确到0.01米). (中等难度题)
25. 如图,已知抛物线 与x轴相交于A、B两点,其对称轴为直线x =2,且与x轴交于点D,AO =1.
(1)填空:b =______,c =______,
点B的坐标为(_____,_____);
(2)若线段BC的垂直平分线EF交BC于点E,交x轴于点F,求FC的长;
(3)探究:在抛物线的对称轴上是否存在点P,使⊙P与x轴、直线BC都相切?若存在,请求出点P的坐标;若不存在,请说明理由.(稍难题)
26.在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在点P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).
(1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长;
(2)探究:将直角尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答:
① ∠PEF的值是否发生变化?请说明理由;
②直接写出从开始到停止,线段EF的中点经过的路线长.(4分)(稍难题)
参考答案
一、1.3;2.6.96×105;3.(x+2)2;
4.25; 5.可能; 6.45;
7.x>2; 8.<; 9.4; 10.120;
二、11.A;12.D;13.C;14.C;15.B;16.D;17.B;
三、18. .
19.解:原式=x-1, .
20.方法一:(1)添加的条件是:AB=AD.
(2)证明:在△ABC和△ADE中,
∵
∴△ABC≌△ADE .
方法二:(1)添加的条件是:AC=AE.
(2)证明:在△ABC和△ADE中,
∵
∴△ABC≌△ADE
21. 解:(1)82 (2)200 (3)56 (4)159
22.(1)设买5元、8元笔记本分别为 本、 本.
依题意得: ,
解得
答:5元和8元的笔记本分别买了25本和15本.
(2)设买 本5元的笔记本,则买 本8元的笔记本.
依题意得: ,
解得 ,
是正整数, ∴ 不合题意,
故不能找回68元.
23.解:(1) 15
(2)
第一种情形 第二种情形 第三种情形
60 BC AD ; 105 BC AE (或 AC DE ) ; 135 AB DE
24.解:⑴过B作BF⊥AD于F.
在Rt△ABF中,∵sin∠BAF= ,
∴BF=ABsin∠BAF=2.1sin40°≈1.350.
∴真空管上端B到AD的距离约为1.35米.
⑵在Rt△ABF中,∵cos∠BAF= ,
∴AF=ABcos∠DAF=2.1cos40°≈1.609.
∵BF⊥AD,CD⊥AD,又BC∥FD,
∴四边形BFDC是矩形.
∴BF=CD,BC=FD.
在Rt△EAD中,∵tan∠EAD= ,
∴ED=ADtan∠EAD=1.809tan25°≈0.844.
∴CE=CD-ED=1.350-0.844=0.506≈0.51
∴安装铁架上垂直管CE的长约为0.51米.
25.解:(1) , ,(5,0)
(2)解:由(1)知抛物线的解析式为
∵当x=2时,y=4,∴顶点C的坐标是(2,4)
∵在Rt△BCD中,BD=3,CD=4
∴ BC =5 ,
∵ 直线EF是线段BC的垂直平分线
∴FB=FC,CE=BE,∠BEF=∠BDC=90°
又∵ ∠FBE=∠CBD
∴ △BEF∽△BDC
∴ ,∴
∴ ,故
(3)存在.有两种情形:
第一种情形:⊙P1在x轴的上方时,设⊙P1的半径为r
∵ ⊙P1与x轴、直线BC都相切
∴点P1的坐标为(2,r)
∴ ∠CDB=∠CG P1=90°, P1G= P1D=r
又∵∠P1CG=∠BCD
∴ △P1CG∽△BCD
,即 , ∴
∴ 点P1的坐标为
第二种情形:⊙P2在x轴的下方时,同理可得
点P2的坐标为(2,-6)
∴点P1的坐标为 或P2(2,-6)
26.解:(1)在矩形ABCD中,∠A=∠D= ,AP=1,
CD=AB=2,则PB= .
∴∠ABP+∠APB= .
又∵∠BPC= ,
∴∠APB+∠DPC= .
∴∠ABP=∠DPC.
∴ △APB∽△DCP.
∴ 即 .
∴ .
(2)解: ∠PEF的值不变.
理由:方法一:过F作 FG⊥AD,垂足为G,
则四边形ABFG是矩形.
∴∠A=∠PGF= ,GF=AB=2.
∴∠AEP+∠APE= .
又∵∠EPF= ,
∴∠APE+∠GPF= .
∴∠AEP=∠GPF.
∴ △APE∽△GFP.
∴ .
∴在 △EPF中, .
∴ ∠PEF的值不变.
方法二:过P作PG⊥BC,垂足为G,则四边形ABGP是矩形.
∴∠A=∠PGF= ,PG=AB=2.
又∵∠EPF= ,
∴∠APE= -∠EPG=∠GPF.
∴ △APE∽△GPF.
∴ .
∴在 △EPF中, .
∴ ∠PEF的值不变.
(3)线段EF的中点经过的路线长为 .
2013福建中考数学考试大纲
2016年中考信息不断变化,www.91zhongkao.com 91中考网提供的中考成绩查询查分、录取分数线信息仅供参考,具体以相关招生考试部门的信息为准!